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Tree-level MHV amplitudes for (super)Yang-Mills theory [1, 2] have an elegant formu-

lation in twistor space [3], and Witten considered the extension of this to general ampli-

tudes in [4], where it was conjectured that amplitudes are non-zero only if all the external

particles in a scattering process are represented by points in twistor space that lie on an

algebraic curve of degree d given by

d = q − 1 + l, (1)

where q is the number of negative helicity particles and l is the number of loops. This can be

understood as resulting from an underlying twistor string theory [4 – 6] and twistor string

theory also leads to conformal (super)gravity, where similar results apply [7]. There has

since been great progress in understanding general super-Yang-Mills amplitudes in twistor

space; see e.g. [8] and references therein.

The twistor strings of [4 – 6] have the problem that conformal supergravity is inextri-

cably mixed in with the gauge theory, so that conformal supergravity modes propagate on

internal lines in gauge theory loop amplitudes and there appears to be no decoupling limit

giving pure super-Yang-Mills amplitudes. A twistor string that gave Einstein supergravity

coupled to super Yang-Mills would be much more useful, and might have a limit in which

the gravity could be decoupled.

It is known that MHV amplitudes for Einstein (super) gravity [9] also have an elegant

formulation in twistor space [4, 10 – 12]. Our purpose here is to seek further evidence that

(super)gravity amplitudes could arise from a twistor string theory. An interesting way of

understanding (1) in gauge theory [4] is that it follows naturally from the perturbation

theory of the Chalmers-Siegel chiral formulation of Yang-Mills theory [13], in which pos-

itive and negative helicities are treated very differently. Moreover, the Chalmers-Siegel

formulation is precisely the form of the gauge theory that arises from the perturbative

twistor string of ref. [4]. We will investigate here chiral formulations of gravity, and show

that perturbation theory about them again leads to the relation (1), suggesting that such

a chiral formulation of gravity might arise from a twistor string.

The action for Yang-Mills can be written as
∫

d4xTr
(

GµνFµν −
ε

2
GµνGµν

)

, (2)

where F = dA + A∧A is the Yang-Mills field strength and G = ∗G is a self-dual auxiliary

2-form taking values in the gauge algebra. Eliminating the auxiliary field Gµν from (2)

gives the Yang-Mills action

1

2ε

∫

d4xTr
(

F (+)
µν F (+)µν

)

, (3)

where F (±) are the self-dual and anti-self dual parts of the field strength: F (±) = 1
2 (F±∗F )

in signatures (2, 2) and (4, 0), or F (±) = 1
2 (F ± i∗F ) in Lorentzian signature. Here we will

present formulae for signatures (2, 2) and (4, 0) so that all fields are real; the generalisation

to signature (3, 1) is straightforward, but involves complex actions. The action (2) is

1

4g2
Y M

∫

Tr (F ∧ ∗F ) +
1

4g2
Y M

∫

Tr (F ∧ F ) , (4)
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where g2
Y M = ε/2. The first term is the usual Yang-Mills action, and the second is a

topological term proportional to the 2nd Chern number that does not affect the equations

of motion or perturbation theory.

The weak coupling limit given by setting ε = 0 in (2) gives Siegel’s chiral theory [14]

(see also [15]) with action
∫

Tr (G ∧ F ) =

∫

d4xTr
(

G ∧ F (+)
)

. (5)

The field G is a Lagrange multiplier field whose variation gives the constraint

F (+)(A) = 0, (6)

implying F = F (−), so that the field strength is anti-self-dual. The field equation obtained

by varying A is

DµGµν = 0, (7)

where Dµ = ∂µ − Aµ is the gauge covariant derivative. Eq. (7) is of the same form as the

Yang-Mills equation DµFµν = 0. The theory describes a helicity +1 particle represented

by the Yang-Mills field A with field strength satisfying (6) (so that F = F (−) satisfies

DµF
(−)
µν = 0) and a helicity −1 particle represented by the independent field G(+) satisfying

DµG
(+)
µν = 0. The linearized spectrum is the same for (5) and (4), but the interactions are

different: the action (5) has an AAG term, describing a vertex of three fields with helicities

+ + −, but, in contrast to Yang-Mills theory, it has no −− + vertex.

The theory with action (5) has the same spectrum as Yang-Mills theory, viz. particles of

helicities +1 (represented by A) and −1 (represented by G), but differs in the interactions,

and it is a non-trivial weak coupling limit of the standard theory written in the form (2).

Perturbation theory in ε based on the action (2) is an expansion about Siegel’s theory (5)

and treats positive and negative helicity gluons rather differently.

It is useful to attribute to the independent fields A and G the weights w[A] = 0 and

w[G] = −1 under a U(1) transformation, related to the ‘anomalous’ U(1) R-symmetry S

in the N = 4 supersymmetric extension of action (4) [4], with S = 4w. The Yang-Mills

action (4) then has weight w = 0 while the Siegel action (5) has weight w = −1 and the

second term in (2) has weight w = −2. In [4], the w = −1 term (5) was interpreted as

the transform to space-time of holomorphic Chern-Simons theory on twistor space, while

the w = −2 interaction term was related to nonperturbative D-instanton contributions in

twistor-string theory.

Consider the perturbation theory in ε for the action (2), which was analysed in [4]. If

one attributes weights w = 1 to ε and w = −1 to the Planck constant ~, then the action

rescaled by 1/~ has weight w = 0. The generating functional of scattering matrix elements

at l-loops must be a sum of terms of the form

~
l−1f(A)εdGq (8)

for some function f , and for this to have total weight zero it is necessary that the relation (1)

holds for each term in the effective action [4]. The power q of G is the number of negative

helicity gluons in an l-loop scattering process, while the power d of ε is the instanton

number, given by the degree of the holomorphic curve in twistor space.
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We now turn to gravity, formulated in terms of a vierbein ea
µ and spin-connection ωµ

bc,

with corresponding one-forms ea, ωbc. The torsion and curvature 2-forms are given by

T a = dea + ωa
b ∧ eb (9)

and

Ra
b(ω) = dωa

b + ωa
c ∧ wc

b. (10)

In a second order formalism, one imposes the constraint

T a = 0, (11)

which determines the spin-connection in terms of the vierbein:

ωµab = Ωµab(e). (12)

Here Ωµab(e) is the usual expression for the Lorentz connection in terms of the vierbein,

Ωµ
ab(e) ≡ eνa∂[µeν]

b
− eνb∂[µeν]

a
− eρaeσb∂[ρeσ]ceµ

c. (13)

The Einstein-Hilbert action is

1

4κ2

∫

ea
∧ eb

∧ Rcd(ω)εabcd. (14)

The same action can be used in the first order formalism, in which the torsion is uncon-

strained and the vierbein eµ
a and the connection ωµ

ab are treated as independent variables.

The field equation obtained by varying ω is (11), which implies that the Lorentz connec-

tion is the Levi-Civita connection (12). The vielbein field equation then gives the Einstein

equation.

In Euclidean signature (4, 0), the spin group factorises as Spin(4) = SU(2) × SU(2)

while in split signature it factorises as Spin(2, 2) = SU(1, 1) × SU(1, 1). The spin-

connection decomposes into the self-dual piece ω(+)ab and the anti-self-dual piece ω(−)ab,

ω
(±)
bc ≡

1

2

(

ωbc ±
1

2
εbc

deωde

)

, (15)

which are the independent gauge fields for the two factors of the spin group.

The curvature 2-form can also be split into self-dual and anti-self-dual pieces

R
(±)
bc ≡

1

2

(

Rbc ±
1

2
εbc

deRde

)

, (16)

and it is easily seen that R(+)ab depends only on ω(+) while R(−)ab depends only on ω(−),

with

R(±)a
b(ω) = dω(±)a

b + ω(±)a
c ∧ ω(±)c

b. (17)

In 2-component spinor notation, where α, β transform under the first SU(2) or SU(1, 1)

factor and α̇, β̇ transform under the second, ω(+)ab becomes ωαβ and ω(−)ab becomes ωα̇β̇.

– 3 –
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An equivalent form of the Einstein-Hilbert action (14) is given using R(+) instead of

R by
1

2κ2

∫

ea
∧ eb

∧ R
(+)
ab (ω). (18)

This gives the action (14) plus the topological term

1

2κ2

∫

ea
∧ eb

∧ Rab(ω). (19)

Using (9) and (10) this can be written as

1

2κ2

∫

d(T a
∧ ea), (20)

which vanishes in the second order formalism in which one sets T a = 0, and in the first

order formalism is a total derivative that does not contribute to the field equations or

Feynman diagrams. As R(+) depends only on ω(+), the action (18) is independent of ω(−)

and depends only on the vierbein and the self-dual spin-connection. Moreover, the first

order action is polynomial in these variables.

The form (18) of the action has been used as a covariant basis for the reformulation of

general relativity in terms of Ashtekar variables, and can be rewritten in two-component

spinor notation as [18, 19]

∫

Σαβ
∧ Rαβ −

1

2
ψαβγδΣ

αβ
∧ Σγδ (21)

where the curvature 2-form Rαβ of ωαβ is given in eq. (17) and Σ is a a self-dual 2-form

acting as a Lagrange multiplier. The totally symmetric Lagrange multiplier field ψαβγδ

imposes the constraint

Σ(αβ
∧ Σγδ) = 0 (22)

which implies that

Σαβ = eα
α̇ ∧ eβα̇ (23)

for some tetrad eαα̇. Solving for Σαβ as in (23) and substituting in (21) yields (18).

It is remarkable that one only needs the self-dual part of the spin-connection in order

to formulate gravity. The torsion constructed from e, ω(+) is (setting ω(−) = 0 in (9))

T̃ a = dea + ω(+)a
b ∧ eb. (24)

If one imposes the constraint T̃ a = 0, one obtains

ω(+)ab = Ω(+)ab(e) (25)

and

Ω(−)ab(e) = 0. (26)

Now (26) implies in turn that

R(−)ab(e) = 0, (27)
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where R(−)ab(e) is the anti-self-dual part of the curvature of the connection Ω(e). Then

the Riemann curvature constructed from the vierbein is self-dual and hence Ricci-flat, so

that the torsion constraint T̃ a = 0 imposes the field equations of self-dual gravity as well

as solving for the spin-connection in terms of the vierbein [20].

Siegel [20] gave a remarkable asymmetric action for gravity that is analogous to the

asymmetric gauge theory action (5) by introducing a Lagrange multiplier field to impose

the constraint T̃ = 0. In the second order formalism, ω(+)ab is given in terms of e by (25)

and the remaining part of T̃ a = 0 is imposed by a Lagrange multiplier σµ
(−)ab which is

anti-self-dual, or in spinor notation σµ
α̇β̇. This has the same index structure as the missing

anti-self-dual spin-connection. Siegel’s action can be written as
∫

σα̇β̇
∧ T̃α

α̇ ∧ eαβ̇ . (28)

Varying σ imposes the self-dual gravity equation (26) so that e represents a graviton of

helicity −2. Varying e gives

dσα̇β̇
∧ e

αβ̇
= 0, (29)

so that the Ricci tensor constructed from the linearised curvature dσ for an anti-self-dual

connection σ vanishes, and the Lagrange multiplier field represents a graviton of helicity

+2. This action then represents particles of helicity ±2, as in Einstein’s theory, but the

interactions are different for the two helicities, and in particular the theory is linear in σ.

There is also a first-order form of this theory, in which ω(+)ab is an independent field

and a Lagrange multiplier is introduced to impose the full constraint T̃ = 0 [20], which

in turn implies the field equations [20]. Siegel also generalised (28) to give an asymmetric

form of N = 8 supergravity, with Lagrange multipliers imposing torsion constraints of the

supergravity theory [20].

Siegel’s asymmetric theory of gravity can be put in a different form that arises as a

weak-coupling limit of the Einstein theory, and gives a chiral perturbation theory of gravity

[16, 17] similar to that arising from the Yang-Mills action (2). The gravity action (18)

depends on the vierbein and ω(+) only, and ω(−) decouples completely: we can write it in

the form
1

2

∫

ea
∧ eb

∧
(

dωab + κ2ωac ∧ ωc
b

)

, (30)

where from now on we omit the superscript (+) so that ω ≡ ω(+) and we have rescaled the

connection by the gravitational coupling κ2. Varying (30) independently with respect to

ωa
b and ea

µ, we obtain (25) giving the connection in terms of the vierbein, and the Einstein

equation

ea
∧

(

dωab + κ2ωac ∧ ωc
b

)

= 0. (31)

Now taking the limit κ → 0 in (30) yields a weak-coupling limit of gravity with action

1

2

∫

ea
∧ eb

∧ dωab, (32)

which can be rewritten using eq. (13) as

−

∫

ea
∧ eb

∧ ωac ∧ Ωc
b = −

∫

ea
∧ eb

∧ ωac ∧ Ω(+)c
b (33)

– 5 –



J
H
E
P
0
2
(
2
0
0
6
)
0
5
7

where Ω(+) = Ω(+)(e) is the self-dual part of the connection (13). This is an action for two

independent fields, the vierbein eµ
a and the self-dual connection ωac; the latter now plays

the role of a Lagrange multiplier field. Note that the self-duality of ωac implies that only

the self-dual part Ω(+) of Ω(e) occurs in the action. The field equation from varying the

Lagrange multiplier field ωac sets the self-dual part of Ω(e) to zero,

Ω(+)a
b(e) = 0. (34)

This implies that the self-dual part of the curvature constructed from the Levi-Civita

connection Ω(e) vanishes

Rµν
ab(Ω(+)) = 0, (35)

so that the vierbein gives a metric with anti-self-dual Riemann curvature. The field equa-

tion for the vierbein gives

eb ∧ dωab = 0. (36)

Comparing with (31), this can be seen to be a version of the Einstein equation linearised

around the anti-self-dual background spacetime described by the tetrad ea, where the

linearised graviton field is the self-dual connection ωac.

The fact that ωab and Ω(−)(e) are respectively self-dual and anti self-dual means that

they describe particles of opposite helicity: e describes a particle of helicity +2 and ω

describes a particle of helicity −2. The linearized spectrum is the same for (32) and (14),

but the interactions differ as (32) has no − − + vertex. The asymmetric theory (32) is

equivalent to the Siegel theory (but with opposite conventions to those used earlier; in (28)

e represents a negative helicity graviton, while in (32) it is a positive helicity one).

Now the form of the action (30) has the weak-coupling limit (32), and one can consider

perturbation theory in κ2 about this weak-coupling limit, in complete analogy with that

of the gauge theory (2). As in that case, it is useful to attribute to the independent fields

ea and ωab the weights w[e] = 0 and w[ω] = −1 under a U(1) transformation, correspond-

ing to the ‘anomalous’ U(1) R-symmetry S in the N = 8 supersymmetric extension of

action (28) [20], with S = 8w. The chiral action (18) has weight w = −1 and the second

term in (30) has weight w = −2. It is tempting to conjecture that the S = −16 interaction

term is related to nonperturbative contributions in a new twistor-string theory for Siegel’s

truncation of N = 8 supergravity. A similar conjecture was made in [11] based on an

analysis of maximally helicity violating scattering amplitudes for gravitons.

Consider the perturbation theory in κ2 for the theory defined by action (30). If one

attributes weights w = 1 to κ2 and w = −1 to the Planck constant ~, then the action

rescaled by 1/~ has weight w = 0. The generating functional of scattering matrix elements

at l-loops must be a sum of terms of the form

~
l−1f̃(e)κ2dωq (37)

for some function f̃ , and for this to have total weight zero it is again necessary that the

relation (1) holds for each term in the effective action. The power q of ω is the number of

negative helicity gravitons in an l-loop scattering process in the theory defined by (30). If

– 6 –
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the theory has a twistor string origin similar to that of [4], then the power d of κ2 might

arise as an instanton number, and the scattering would have support on curves in twistor

space characterised by the integer d.

This formulation of gravity extends to one of N = 8 supergravity in which the Einstein

term is written in the form (30) and the vector field kinetic terms take the form (2). In

the weak coupling limit, it gives Siegel’s chiral N = 8 supergravity [20].

We have seen that the formulation of gauge theory with action (2) and that of gravity

with action (30) have many similarities: both have a non-trivial asymmetric weak-coupling

limit and both have a perturbation theory that leads to the relation (1). For the gauge

theory, the action (2) arises from a twistor string theory with the first term arising from the

perturbative theory and the second term from instanton corrections. The constraint (1)

then implies that amplitudes are supported on holomorphic curves of degree d in twistor

space. It is natural to conjecture that the gravity action (30), or its N = 8 supergravity

generalisation, should also have an elegant twistor theory origin, and that the formula (1)

has a similar twistor space interpretation. We will discuss the twistor formulation of this

theory elsewhere.
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